Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gideon Steyl

Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa

Correspondence e-mail: geds12@yahoo.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.024$
ωR factor $=0.056$
Data-to-parameter ratio $=20.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Chloro(triphenylphosphine)(tropolonato)palladium(II)

The title compound, $\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right) \mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$, is a new type of α-diketone palladium(II) complex containing a tertiary arylphosphine. It crystallizes with a distorted square-planar geometry about the palladium(II) metal centre. The most important bond distances and angles include $\mathrm{Pd}-\mathrm{O}($ trans P$)=$ $2.0481(12) \AA, \mathrm{Pd}-\mathrm{O}($ trans Cl$)=2.0016(12) \AA, \mathrm{Pd}-\mathrm{P}=$ 2.2268 (4) $\AA, \mathrm{Pd}-\mathrm{Cl}=2.2770(5) \AA, \mathrm{O}-\mathrm{Pd}-\mathrm{O}=80.22(5)^{\circ}$ and $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}=3.7(2)^{\circ}$. A $\pi-\pi$ stacking interaction is observed between neighbouring tropolonate groups, with an interplanar distance of 3.377 (6) Å.

Comment

A variety of bis- β-diketonato-palladium(II) complexes have been characterized to date for acetylacetonate-type ligands (Cambridge Structural Database; Version 5.27; Allen, 2002). The addition of tertiary aryl phosphines to these types of complexes has resulted in a limited number of reported structures (Okeya et al., 1984; Ooi et al., 1983; Siedle et al., 1982). The inclusion of a chloro derivative with an α - (Lang et al., 1999) or β-diketone (Woisetschlager et al., 2000; Navarro et al., 2005) has attracted less attention. In a previous study (Steyl, 2006), we reported the structure of $\left[\left(\mathrm{PCy}_{3}\right)(\text { Trop })_{2} \mathrm{Pd}\right]$ (Cy = cyclohexyl and Trop = 2-hydroxy-2,4,6-cycloheptatrienone). The title compound, (I), is presented as an example of a monotropolonate-palladium(II) complex containing chloro and triphenylphosphine ligands.

(I)

The molecule of (I) crystallizes with a slightly distorted square-planar geometry about the palladium(II) metal centre. The $\mathrm{Pd}^{\mathrm{II}}$ atom is elevated by 0.0068 (1) \AA above the plane defined by the four coordinated atoms ($\mathrm{O} 11, \mathrm{O} 12, \mathrm{P}, \mathrm{Cl})$. The $\mathrm{Pd}-\mathrm{O}$ bond distances (Table 1) do not differ from those observed for the bis(tropolonato)palladium(II) (Steyl, 2005) or the tricyclohexyl (Steyl, 2006) derivatives. The bidentate bite angle of $80.22(5)^{\circ}$ (Table 1) does not differ significantly from that in the previously reported tropolonate structures of palladium(II). A torsional twist is observed for the tropolonate ligand (see values of torsion angles in Table 1).

Figure 1
The molecular structure of (I), showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Figure 2
A pair of moleculesl, showing the stacking [symmetry code: (i) $-x, 2-y$, $-z]$. H atoms have been omitted.

A weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond (Table 2) is found in (I). $\pi-\pi$ Stacking between parallel tropolonate ring systems (Fig. 2) is observed, with an interplanar distance of 3.377 (6) \AA, which is significantly shorter than that [3.51 (1)3.80 (2) A] in the previously published tropolonate-palladium(II) complexes (Steyl, 2005, 2006). This close interaction can be attributed to the shift of the tropolonate ring system to form an eclipsed conformation of the C11-C17 sevenmembered ring.

In conclusion, the substitution of a chloro group for a tropolonate $\left\{\left[\mathrm{PCy}_{3}(\text { Trop })_{2} \mathrm{Pd}^{\mathrm{II}}\right]\right.$; Steyl, 2006\} ligand does not significantly alter the bonding mode of the remaining tropolonate ligand to the $\mathrm{Pd}^{\mathrm{II}}$ atom.

Experimental

The title complex was synthesized by the addition of $\mathrm{PPh}_{3}(83 \mathrm{mg}$, $0.316 \mathrm{mmol})$ to an acetone solution (10 ml) of the bis-tropolonato-
palladium(II) complex ($100 \mathrm{mg}, 0.287 \mathrm{mmol}$) containing hydrochloric acid (0.5 ml). The suspension dissolved and gave an orange solution; on evaporation of the solvent, crystals suitable for X-ray crystallography were obtained. Yield 45 mg (30%).

Crystal data

$\left[\mathrm{Pd}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right) \mathrm{Cl}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right]$
$M_{r}=525.23$
Triclinic, $P \overline{1}$
$a=9.8561$ (3) \AA
$b=9.9719$ (2) \AA
$c=13.2792$ (3) \AA
$\alpha=85.851$ (1) ${ }^{\circ}$
$\beta=72.262(1)^{\circ}$
$\gamma=63.317(1)^{\circ}$
$V=1107.51(5) \AA^{3}$
$Z=2$
$D_{x}=1.575 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\mu=1.05 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Prism, red
$0.25 \times 0.14 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1998)
$T_{\text {min }}=0.782, T_{\text {max }}=0.897$
24655 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.039 P)^{2}\right. \\
+3.4366 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\AA,^{\circ}$).

$\mathrm{Pd}-\mathrm{O} 11$	$2.0481(12)$	$\mathrm{C} 11-\mathrm{O} 11$	$1.291(2)$
$\mathrm{Pd}-\mathrm{O} 12$	$2.0016(12)$	$\mathrm{C} 12-\mathrm{O} 12$	$1.295(2)$
$\mathrm{Pd}-\mathrm{P}$	$2.268(4)$	$\mathrm{C} 12-\mathrm{C} 11$	$1.462(2)$
$\mathrm{Pd}-\mathrm{Cl}$	$2.2770(5)$		
			$95.01(4)$
$\mathrm{O} 11-\mathrm{Pd}-\mathrm{Cl}$	$93.10(4)$	$\mathrm{O} 12-\mathrm{Pd}-\mathrm{P}$	$91.818(18)$
$\mathrm{O} 12-\mathrm{Pd}-\mathrm{O} 11$	$80.22(5)$	$\mathrm{P}-\mathrm{Pd}-\mathrm{Cl}$	
			$5.2(3)$
$\mathrm{O} 12-\mathrm{C} 12-\mathrm{C} 11-\mathrm{O} 11$	$3.7(2)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 17$	

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 32-\mathrm{H} 32 \cdots \mathrm{Cl}$	0.93	2.67	$3.496(2)$	148
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 11^{\mathrm{ii}}$	0.93	2.46	$3.333(3)$	157

Symmetry code: (ii) $-x+1,-y+1,-z$.
All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINTPlus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg \& Putz, 2004); software used to prepare material for publication: SHELXL97.

metal-organic papers

Financial assistance from the University of the Free State and Professor A. Roodt is gratefully acknowledged. Mr L Kirsten is acknowledged for the data collection. Part of this material is based on work supported by the South African National Research Foundation (NRF) under grant number GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the NRF.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388
Brandenburg, K. \& Putz, H. (2004). DIAMOND. Release 3.0e. Crystal Impact GbR, Postfach 1251, D-53002, Bonn, Germany
Bruker (1998). SADABS. Version 2004/1. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). SAINT-Plus (including XPREP). Version 7.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
Lang, R., Schorwerth, A., Polborn, K., Ponikwar, W., Beck, W., Severin, T. \& Severin, K. (1999). Z. Anorg. Allg. Chem. 625, 1384-1390.
Navarro, O., Marion, N., Stevens, E. D., Scott, N. M., Gonzalez, J., Amoroso, D., Bell, A. \& Nolan, S. P. (2005). Tetrahedron, 61, 9716-9722.

Okeya, S., Miyamoto, T., Ooi, S., Nakamura, Y. \& Kawaguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 395-404.
Ooi, S., Matsushita, T., Nishimoto, K., Okeya, S., Nakamura, Y. \& Kawaguchi, S. (1983). Bull. Chem. Soc. Jpn, 57, 3297-3301.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siedle, A. R., Newmark, R. A. \& Pignolet, L. H. (1982). J. Am. Chem. Soc. 104, 6584-6590.
Steyl, G. (2005). Acta Cryst. E61, m1860-m1862.
Steyl, G. (2006). Acta Cryst. E62, m650-m652.
Woisetschlager, O. E., Geisbauer, A., Polborn, K. \& Beck, W. (2000). Z. Anorg. Allg. Chem. 626, 766-774.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

